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Abstract

Liver cancer is one of the most recurrent detected cancers in the world. The most common type of liver cancer is hepatocellular
carcinoma (HCC) which begins in the cells called hepatocytes. It can be cured with surgery or transplant if detected early but is
incurable in more advanced cases. The exact cause of HCC is unknown, but some factors like several demographic, risk factors,
laboratory features, and underlying problems like hepatitis B and hepatitis C virus, autoimmune hepatitis, and heavy drinking
increase the risk of death from HCC. In this paper, we have used some of these factors to predict their chances of survival of a
patient diagnosed with HCC. For our study, we have used a publicly available dataset of 165 patients maintained and made available
by a University Hospital in Portugal. The dataset contains 23 quantitative and 26 qualitative variables with 10.22% missing data.
In our approach, we first standardized the data and then handled the missing values by comparing four imputation techniques:
mean, median, KNN, and random-forest-based MICE. After imputation, ANOVA F-value and mutual information were used to
select the relevant features. The prepared data was then studied on five classifiers: Logistic Regression, Support Vector Machine,
Random-Forest, Bagging-Classifier, and Multilayer Perceptron (MLP). The MLP based classifier and random-forest-based MICE
imputation technique and feature selection produced the best results with an accuracy of 90.02% and f1-score of 0.914. With these
results, we can say that our machine-learning based approach can be used to test the performance with huge database and effectively
be applied to predict mortality risk in patients and aid clinicians.
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hepatocellular carcinoma.

1. Introduction

Hepatocellular carcinoma was the third most common cause
of cancer deaths in 2020, with an estimated 905,677 new cases
and 830,180 deaths [1]. Some of the risk factors like alcohol
addiction, chronic hepatitis B and hepatitis C virus infection,
metabolic liver disease, and exposure to dietary toxins are pre-
ventable to reduce the global issue of HCC [2]. Early-stage
HCC is compliant to potentially curative treatments like surgi-
cal resection, local ablation, and liver transplantation [3].

Prevalence of HCC is rising in people born between 1945
and 1965 in the United States due to their advancing age and
prolonged HCV infection [4]. According to the study of Ashish
Kumar et al. [5], HCC is one of the major causes of mortality,
morbidity and healthcare expenditure for patients with chronic
liver disease in India. Over the last few decades, various tech-
niques have been proposed by researchers for the detection of
liver cancer, for example, using Otsu’s method for enhancing
MRI images and using watershed method for segmenting can-
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cer cells in the processed image [6]. Amita Das et al. [7] pro-
posed a new technique called watershed Gaussian based deep
learning (WGDL) using 225 tomography (CT) images of the
liver and used deep neural networks for the automated classifi-
cation of different cancers. Xin Dong et al. [8] presented the hy-
bridized fully convolutional neural network (HFCNN) method
for identification and segmentation of liver cancer and lesions.
N. Ramkumar et al. [9] used Conditional probability Bayes the-
orem for the prediction of liver cancer. To predict the recurrence
of liver cancer, Hiroyuki Ogihara et al. [10] proposed a classi-
fier based on Boolean algebra using a binary pattern consisting
of a combination of clinical and genomic data. Some of the
research studies have explored ways and suggestions to treat
and prevent HCC, for example, one study reviews the essen-
tial workup and treatment options necessary for the treatment
of patients with primary liver cancers [11]. Another study has
provided an update on the current and future medical and surgi-
cal management of HCC [12]. In their study, Tracey G.Simon
et al. have discussed various lifestyle and environmental ap-
proaches for the prevention of HCC [13]. According to Junhao
Zheng et al., salvage liver transplantation and repeat hepatec-
tomy might be the best treatment on the benefits of survival
[14]. Many studies have also applied machine learning on dif-
ferent HCC datasets over the last years, for example, Santos et
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al. proposed a cluster-based oversampling algorithm and used
SMOTE for balancing the dataset [15]. This balanced data was
used for the classification with logistic regression and neural
network algorithms [16]. Sawhney et al. employed a random
forest algorithm and firefly optimization method [17] for the
diagnosis of HCC [18]. Ksiazek et al. employed a 2-level ge-
netic optimizer for feature selection and parameter optimization
and used naive Bayes, random forest, KNN, SVM, logistic re-
gression, linear discriminant and, multilayer perceptron for the
classification of the HCC dataset [19]. Fahrettin Burak Demir
et al. employed mean imputation method for missing values
and used chaotic darcy optimization method for feature selec-
tion and studied nine widely used machine learning based clas-
sifiers to classify the HCC dataset [20].

One of the major contributions of our work was to employ
an efficient data preprocessing technique on the HCC dataset
that aids classification models to yield better results. The most
challenging part in data preprocessing was handling the miss-
ing values. Although there are only 10.22% missing values
in the dataset, they are scattered in such a way that applying
common missing data handling techniques like row and column
sampling would lead to over 90% data loss and make the clas-
sification task quite challenging. We tested several well-known
imputation techniques like mean, median, KNN and random
forest based MICE imputation and concluded that the random
forest based MICE imputation outperforms the other imputa-
tion techniques on this dataset. Other contributions include
selecting the best features that are most relevant for the clas-
sification task. The dataset contains 50 features including the
output label which represents whether a diagnosed patient was
HCC positive or not. Most of the remaining 49 features were
irrelevant and did not contribute to better accuracy. We used
ANOVA F-value and mutual information for selecting the most
relevant features for classification. For testing the preprocessed
data, we compared the performances of five classification mod-
els – logistic regression based classifier, support vector machine
classifier, random forest, bagged classifier and, neural networks
– and concluded that neural networks outperformed the other
classifiers by achieving an accuracy of 90.02% and f1-score of
0.914 on dataset preprocessed using random forest based MICE
imputation and feature selection.

2. Data description

The HCC dataset was made available by UCI machine learn-
ing Repository [21], and contains several demographic, risk
factors, laboratory and overall survival features of 165 real pa-
tients diagnosed with HCC at a University Hospital in Portugal.
The dataset contains 50 features out of which one is the target
label encoded as a binary variable where the value 1 denotes
that the patient died and 0 denotes that the patient survived. The
remaining 49 features were selected according to the manage-
ment of HCC’s EASL-EORTC (European Association for the
Study of the Liver - European Organisation for Research and

Treatment of Cancer) clinical practice guidelines [22]. Out of
these 49 features, there are 23 categorical features, and 26 nu-
meric features. The list of features provided in the dataset are
listed in Table 1. In the dataset, 10.22% of the data contributes
to missing values and is represented as ‘?’. A mild level of data
imbalance is also present in the dataset as 63 patents have the
target label ’deceased’ and 102 patients have the target label
’survived’.

S. No Prognostic features Range Missing (%)
1 Gender 0,1 0.0
2 Symptoms 0,1 10.91
3 Alcohol 0,1 0.0
4 Hepatitis B Surface Antigen 0,1 10.3
5 Hepatitis B e Antigen 0,1 23.64
6 Hepatitis B Core Antibody 0,1 14.55
7 Hepatitis C Virus Antibody 0,1 5.45
8 Cirrhosis 0,1 0.0
9 Endemic Countries 0,1 23.64

10 Smoking 0,1 24.85
11 Diabetes 0,1 1.82
12 Obesity 0,1 6.06
13 Hemochromatosis 0,1 13.94
14 Arterial Hypertension 0,1 1.82
15 Chronic Renal Insufficiency 0,1 1.21
16 Human Immunodeficiency Virus 0,1 8.48
17 Nonalcoholic Steatohepatitis 0,1 13.33
18 Esophageal Varices 0,1 31.52
19 Splenomegaly 0,1 9.09
20 Portal Hypertension 0,1 6.67
21 Portal Vein Thrombosis 0,1 1.82
22 Liver Metastasis 0,1 2.42
23 Radiological Hallmark 0,1 1.21
24 Age at diagnosis 20.0-93.0 0.0
25 Grams of Alcohol per day 0.0-500.0 29.09
26 Packs of cigarettes per year 0.0-510.0 32.12
27 Performance Status 0.0-4.0 0.0
28 Encephalopathy degree 1.0-3.0 0.61
29 Ascites degree 1.0-3.0 1.21
30 International Normalized Ratio 0.84-4.82 2.42
31 Alpha-Fetoprotein (ng/mL) 1.2-1810346.0 4.85
32 Hemoglobin (g/dL) 5.0-18.7 1.82
33 Mean Corpuscular Volume (Fl) 69.5-119.6 1.82
34 Leukocytes(G/L) 2.2-13000.0 1.82
35 Platelets (G/L) 1.71-459000.0 1.82
36 Albumin (mg/dL) 1.9-4.9 3.64
37 Total Bilirubin(mg/dL) 0.3-40.5 3.03
38 Alanine transaminase (U/L) 11.0-420.0 2.42
39 Aspartate transaminase (U/L) 17.0-553.0 1.82
40 Gamma glutamyl transferase (U/L) 23.0-1575.0 1.82
41 Alkaline phosphatase (U/L) 1.28-980.0 1.82
42 Total Proteins (g/dL) 3.9-102.0 6.67
43 Creatinine (mg/dL) 0.2-7.6 4.24
44 Number of Nodules 0.0-5.0 1.21
45 Major dimension of nodule (cm) 1.5-22.0 12.12
46 Direct Bilirubin (mg/dL) 0.1-29.3 26.67
47 Iron (mcg/dL) 0-224 47.88
48 Oxygen Saturation (%) 0-126 48.48
49 Ferritin (ng/mL) 0-2230 48.48
50 Class 0.0-1.0 0.0

Table 1: List of features provided in the HCC dataset along with their range
and percentage of missing values.
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3. Data Standardization

Data standardization is an important pre-processing step
when the features have different ranges. It assures that the val-
ues of numeric features in the dataset are on a common scale
and therefore comparable [23]. All the 26 numerical features
were standardized to follow normal distribution with mean of
zero and a standard deviation of one using Equation 1. The
categorical features need not be standardized.

xstandardized =
x − µ
σ

(1)

Here, x represents the raw numerical feature vector, µ de-
notes the mean of feature vector x and, σ represents the stan-
dard deviation of feature vector x. The process was applied on
the dataset prior to the imputation of missing values. In Fig-
ure 1, 2, 3, three numerical features are shown before and after
standardization (left to right). It is observable that features be-
fore standardization have different ranges which were improved
after standardization.

Figure 1: For the feature Alkaline phosphatase (U/L), the original distribution
is represented on the left and the standardized distribution is represented on

the right for both the target classes.

Figure 2: For the feature Gamma glutamyl-transferase (U/L), the original
distribution is represented on the left and the standardized distribution is

represented on the right for both the target classes.

4. Missing Values Imputation

For handling the missing values in the dataset we compared
four imputation techniques, namely:

Figure 3: For the Total proteins (g/dL), the original distribution is represented
on the left and the standardized distribution is represented on the right for both

the target classes.

• Mean imputation

• Median imputation

• KNN imputation

• Random forest based Multiple Imputation by Chained
Equations (MICE)

The process begins by first imputing the missing values in
train sets and then using the imputed train sets to impute the
missing values in test sets. This setup ensures that the data
in test sets remains unseen and no missing values in the train
data were imputed through test data since it would lead to data
leakage. We used k-fold cross validation to split the data into
multiple folds of train and test sets, as discussed in Subsection
8.1. The motive behind dividing the dataset into multiple fold
was to utilize the complete dataset for a rigorous testing of the
imputation and classification techniques. The four imputation
techniques mentioned before are briefly described below:

4.1. Mean Value Imputation

Mean value imputation is a well known imputation technique
applied to handle the missing values in a dataset [24]. This
imputation process begins by iterating over the features in the
train dataset one by one and groups them into two sets based
on their target label, which in our case is binary encoded. Set
one contains data points that have the target label 0 and set two
contains data points that have the target label 1. The missing
values in each set are replaced by the mean of the non-missing
values in that set. Once the process is complete, all the missing
values in the train dataset are imputed and utilized to impute
the missing values in the test dataset. For each feature in the
test dataset, the missing values in the feature are replaced by
the mean of all the values in that feature in the train dataset.

4.2. Median Value Imputation

Median value imputation is another well known imputation
technique applied to handle the missing values in a dataset. It
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is similar to the mean value imputation technique since it uses
the median statistic instead of the mean statistic in the process
and therefore it has been used in many works alongside mean
imputation for comparison [25], [26]. This imputation process
begins by iterating over the features in train dataset one by one
and groups them into two sets based on their target label. In
our case, set one contains data points that have the target label
0 and set two contains data points that have the target label 1.
The missing values in each set are replaced by the median of the
non-missing values in the set. Once the process is complete, all
the missing values in the train dataset are imputed and utilized
to impute the missing values in the test dataset. For each feature
in the test dataset, the missing values in the feature are replaced
by the median of all the values in that feature in the train dataset.

4.3. KNN Imputation

The k nearest neighbour (KNN) imputation technique uti-
lizes the data-points near the missing value to calculate the
imputation value. These nearby data points are calculated by
means of distance metrics like euclidean distance, manhattan
distance, cosine distance etc. The algorithm begins by calcu-
lating the distance between the missing datapoint and the other
data points in train data. It then selects k data points nearest to
the missing value datapoint and computes the missing value by
taking the mean of non-missing values from the k neighbours.
The algorithm has been used in a variety of research works like
missing value imputation for DNA microarray data [27] and
imputation for software quality datasets [28]. The variable k is
a hyperparameter and in our work the value of k was decided
experimentally as 13.

4.4. Multiple Imputation by Chained Equations (MICE) with
random forest

Multivariate imputation by chained equations (MICE) is one
of the most favourable algorithm for handling the missing val-
ues and is available in many programming languages like R due
to it’s popularity [29], [30]. Random forest based MICE is a
variation of the MICE imputation technique [31] and has been
widely used in many studies for handling missing data [32],
[33]. The algorithm begins by creating multiple copies of the
dataset and replacing the missing data values in each copy using
the MICE procedure. It then analyzes the copies of the dataset
using an intended statistical analysis and combines the results
of these data analyses and returns it.

The MICE procedure imputes the missing data by cycling
multiple times through the steps below:

Step 1: The missing values in each feature are replaced
with a temporary ”placeholder” value using the median of
non-missing values available for that feature.

Step 2: The “placeholder” values in the current feature are
set back to missing.

Step 3: The missing values of the current feature are pre-
dicted using a random forest model trained on the remain-
ing features.

Step 4: Steps 2–3 are repeated separately for each feature
that has missing data.

Steps 1 - 4 are repeated once for each of the features. At
the end of this cycle, all of the missing values in the features
are replaced with predictions from the trained random forest
models.

The above procedure was done on multiple copies of the orig-
inal data after which, the imputed copies of the dataset are com-
bined to create the final imputed dataset. The number of copies
is a hyperparameter which in our study was decided experimen-
tally as 5.

5. Feature selection

Feature selection is an important step that insures only the
relevant features are selected from the dataset for training the
classification models [34]. The primary objectives of feature
selection are:

(a) Choosing the best feature subset in order to minimize
the generalization error.

(b) Improve the generalization performance.

(c) Fasten the process by reducing the computational cost.

In this work, we have used ANOVA F-value method for nu-
merical features and the mutual information method for cate-
gorical features. The two methods are briefly described below:

5.1. ANOVA F-value:

Analysis of variance (ANOVA) is a statistical method that
uses the F-statistic hypothesis test or F-test to determine
whether the mean of groups of three or more distributions are
similar or not by comparing intra-group variance to inter-group
variance. Important features are selected by considering the dif-
ference in mean of sample distributions such that, greater dif-
ference in mean denotes that the feature is more important. Due
to it’s promising results, this technique has been used in many
studies like pattern recognition of jet fuels [35], Identification
of bacteriophage virion proteins [36] and, Modular neural-SVM
scheme for speech emotion recognition [37]. The process has
a hyperparameter n which denotes the number of top important
features to select. In this study, value of n was decided experi-
mentally as 11.
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5.2. Mutual information:

Mutual information is a technique that determines the
amount of information obtained from one variable given the
known value of other variable [38]. The mutual information
between two variables can be calculated using Equation 2.

I(X; Y) = H(X) − H(X|Y) (2)

Here, I(X;Y) is the mutual information for X and Y represented
in bits, H(X) is the entropy for X and H(X—Y) is the condi-
tional entropy for X given Y. The process has a hyperparameter
n which denotes the number of top important features to select.
In this study, value of n was decided experimentally as 20.

6. Classification

In this study we have trained and tested five different models
on the HCC dataset to evaluate the four imputation techniques
and selected important features. The five classifiers are based
on logistic regression, support vector machine (SVM), random
forest, bagging classifier and, multilayer perceptron (MLP) and
are briefly described below:

6.1. Logistic Regression:

Logistic regression is a modeling technique that uses logistic
function to model a dependent binary variable and deduce the
relationship between the dependent binary variable and one or
more interval, ordinal, or nominal variables [39]. The logistic
regression model has shown promising results in various tasks
like bankruptcy prediction from user data [40] and, landslide
susceptibility mapping in the Kakuda-Yahiko Mountains, Cen-
tral Japan [41]. The output ypred of the logistic regression is
given by Equations 3 and 4.

ypred = σ(wT .x + b) (3)

σ(z) =
1

1 + (e−z)
(4)

Here, w and b are the trainable parameters known as weight
vector and intercept term respectively, x is the input vector
and σ is the logistic or sigmoid function. To train this model,
we used mini-batch gradient descent optimizer along with l1
penalty (lasso) and l2 penalty (ridge). The hyperparameters
tested during optimizing the classifier are listed in Table 2. The
best parameters were selected using k-fold cross validation as
discussed in Subsection 8.1.

6.2. Support Vector Machine:

Support Vector Machine is a classification strategy that
works by transforming the training data into a higher dimen-
sion, and using it to calculate the optimal separation boundaries
between classes [42]. In SVMs, these separation boundaries
are referred to as hyper planes and are identified using support
vectors. Using these separation boundaries, SVMs are able to
classify both linear and nonlinear data efficiently. This is also a
popular classifier and has been successfully applied in the field
of bioinformatics [43], hydrology [44], and for financial fore-
casting [45].

σ(w) =
1
2

wTw − J(w, b, a) (5)

Here, w and b are the trainable parameters and J(w, b, a) is the
loss function to be minimized. K-fold cross validation was used
for optimizing the classifier hyperparameters as discussed in
Subsection 8.1 and the hyperparameters tested for optimizing
the classifier are listed in Table 2.

6.3. Random Forest:

Random forest is an ensemble learning technique which con-
sists of multiple decision trees as base learners, and uses boot-
strap aggregation to create random samples of features from the
input dataset and train each individual tree. The uncorrelated
forest of trees created is then used to predict the output value
by majority or committee voting [46]. Random forest is differ-
ent from other bagging techniques in terms of feature sampling
as it uses only a subset of features at random and the best split
feature from the subset is used to split each node in a tree. Be-
cause of it’s effectiveness, random forest classifiers have been
successfully applied in tasks like modeling structure-activity re-
lationships of pharmaceutical molecules [47] and, groundwater
potential mapping in Mehran Region, Iran [48]. Several hyper-
parameters that were testing during optimization of the algo-
rithm are listed in Table 2.

6.4. Bagging Classifier:

Bagging classifier is another ensemble learning technique
that fits the base classifiers (decision trees) on random subsets
of the input dataset and then utilizes their individual predictions
to deduce the final prediction. This method reduces the variance
of a single decision tree, by introducing randomization into its
construction procedure [49]. Unlike random forests, bagging
classifier uses only row sampling, instead of both row and col-
umn sampling. Several hyperparameters that were testing dur-
ing optimization of the algorithm are listed in Table 2.
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6.5. Multilayer perceptron:

Multilayer perceptron is a type of artificial neural network
(ANN) with multiple hidden layers between the input and out-
put layers. this models is very efficient in capturing complex
nonlinear behaviours in data due to its flexible structure and
approximation capabilities [50]. The architecture of a MLP
comprises a collection of connected units called neurons that
are organized into multiple layers such that the neurons of one
layer are connected only to neurons of immediately preceding
and immediately following layers. This neural network based
classifier is quiet popular for it’s efficacy and has wide range of
applications in tasks like damage detection of truss bridge joints
[51] and, breast cancer detection [52]. Each node in MLP clas-
sifier calculates the output from the input data using Equation
6.

al
j = φ(bl

j +
∑

k

Wl
jkal−1

k ) (6)

Where Wl
jk is the trainable weight matrix of current layer l, al−1

k

is the activation vector from the previous layer l−1, bl
j is the bias

term of current layer and, φ is the non-linear activation function
which in our experiments was softmax activation function for
the output layer and ReLU activation function for the remaining
layers.

The model uses supervised learning to update the trainable
parameters through backpropagation. For training the model,
adaptive momentum (ADAM) was used as the optimization
function and sparse categorical cross-entropy was used as the
loss function. Other hyperparameters that were tested for opti-
mizing the classifier are listed in Table 2.

7. Evaluation metrics

For comparing different model architecture and assessing
their performances, we chose F1-Score and accuracy as the
evaluation metrics. The two evaluation metrics are briefly de-
scribed below.

7.1. Accuracy:

Accuracy is a statistical measure used for evaluating the per-
formance of a classification model. It is defined as a ratio of
the number of correctly classified points to the total number of
points and is usually denoted in percentage. The accuracy value
of a model can be derived from a confusion matrix (illustrated

in Figure 4) using Equation 7.

Accuracy =
Number of correctly classified points

Total number of classified points

=
TP + TN

TP + FP + TN + FN

(7)

Figure 4: Confusion Matrix represented in terms of actual class labels and
predicted class labels.

Here, true positives (TP) is the number of positive data points
that were correctly classified as positives, true negatives (TN)
is the number of negative data points that were correctly clas-
sified as negatives, false positives (FP) is the number of nega-
tive data points that were incorrectly classified as positives, and
false negative (FN) is the number of positive data points that
were incorrectly classified as negatives.

7.2. F1-Score:

F1-Score is another statistical measure used for evaluating
the performance of a classification model. It is defined as har-
monic mean of precision and recall values, which are derived
from a confusion matrix (illustrated in Figure 4) using Equa-
tions 8, 9, and 10.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ precision ∗ recall

precision + recall
(10)

A high F1-Score is only possible when precision and recall
values are both high which means that the model is effectively
classifying the data resulting in a lesser number of false posi-
tives and false negatives.
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8. Experimental setup and Results

For testing and evaluating the effectiveness of the different
imputation techniques, feature selection methods, and select-
ing the best classification model, HCC dataset was first divided
into two non-overlapping sets namely optimization set and test
set. The optimization set was used for optimizing the hyper-
parameters using k-fold cross-validation, and the test set was
later used to evaluate the performances of the optimized classi-
fiers and data pre-processing techniques on unseen data. K-fold
cross validation and evaluation metric scores on the test set are
discussed in the subsections below.

Various elements of the resources that were used for conduct-
ing the experiments in this study include python programming
language, along with Pandas, Tensorflow, Seaborn, Matplotlib
and Scikit-learn libraries on an Intel Core i5-9600K 3.7 GHz
machine with 16 GB of RAM.

8.1. K-fold cross validation:

K-fold cross validation is a statistical method based on a
dataset resampling procedure to train, optimise and evaluate
classification models [53]. In our experiments, we divided the
dataset into k sets of non-overlapping datapoints such that one
out of these k sets was chosen as validation set and the remain-
ing k − 1 sets were used as training set. The training and vali-
dation sets were used for optimizing the hyperparameters listed
in Table 2. Since this is a k step process, the final performance
was calculated by averaging the metric scores obtained in the k
steps. Figure 5 illustrates k-fold cross validation for k = 5, as
also used in our experiments and, Table 2 shows the list of hy-
perparameters that were tested and selected using k-fold cross
validation.

Figure 5: Five step data splitting for k-fold cross validation. At each step,
training and validation set is used for hyperparameter optimization.

8.2. Results:

After obtaining the optimal hyperparameters through k-fold
cross validation, the complete optimization set was prepro-
cessed and used for training the five classifiers. The best pre-
processing techniques and classifier were then selected based
on the metric scores on the test set.

During feature selection, 20 categorical and 11 numerical
features were selected using mutual information and ANOVA
F-Measures respectively. The selected features are listed in
Table 3.

Numerical features Categorical features
Performance Status Gender

Ascites degree Symptoms
International Normalised Ratio Alcohol

Alpha-Fetoprotein (ng/mL) Hepatitis B Surface Antigen
Haemoglobin (g/dL) Hepatitis B Core Antibody

Albumin (mg/dL) Hepatitis C Virus Antibody
Total Bilirubin(mg/dL) Cirrhosis

Aspartate transaminase (U/L) Endemic Countries
Alkaline phosphatase (U/L) Smoking

Direct Bilirubin (mg/dL) Diabetes
Iron (mcg/dL) Obesity

Hemochromatosis
Human Immunodeficiency Virus

Nonalcoholic Steatohepatitis
Esophageal Varices

Splenomegaly
Portal Hypertension

Portal Vein Thrombosis
Liver Metastasis

Radiological Hallmark

Table 3: List of selected Categorical and Numerical features.

Performances of the classifiers on unseen data with and with-
out feature selection are shown in Table 4 and Table 5 respec-
tively. Metric results of the best performing classifier (MLP)
over the different imputation techniques are illustrated in Fig-
ure 6 and Figure 7. It can be observed that in both cases, random
forest based MICE imputation method performs better than the
other imputation techniques. Also, multilayer-perceptron out-
performs all the other classifiers by achieving an accuracy of
90.02% and f1-score of 0.91 on MICE imputed dataset with
feature selection. It is also observable that feature selection
plays a significant role for in improving the performances of
the models on the HCC dataset and the imputation techniques
perform better when feature selection is used.
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Table 2: The hyperparameters tested while preparing the data and extracting important features using k-fold cross validation.

Classifier type Hyperparameter Tested values Best value
Logistic regression penalty l1, l2, elasticnet, none l2

C (Regularization parameter) 10−k, where k = 0, 1, 2, 3, 4 10−3

C (Regularization parameter) 10−k, where k = 0, 1, 2, 3, 4 10−3

SVM kernel type linear, poly, rb f poly
Degree of the polynomial kernel function 1, 2, 3, 4 3

n estimators (number of base learners) 32 × k, where k = 1, 2, 3, 4, 5, 8 64
Random forest max depth 2 × k, where k = 1, 2, 3, 4, 5 6

min samples split 2 × k, where k = 1, 2, 3, 4, 5 4
n estimators (number of base learners) 2k, where k = 4, 5, 6, 7, 8, 9 128

Bagging classifier max samples k × 10−1, where k = 3, 4, 5, 6, 7, 8 0.5
max features k × 10−1, where k = 3, 4, 5, 6, 7, 8 0.5

Number of hidden layers 1, 2, 3, 4, 5, 6 3
Number of units in each layer 2k, where k = 2, 3, 4, 5, 6, 7 32

Dropout rate 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 0.4
MLP Optimization function Adam, RMSprop, AdaGrad Adam

epochs 20 × k, where k = 1, 2, 3, 4, 5 60
learning rate 10−k, where k = 2, 3, 4, 5, 6 10−5

batch-size 2k, where k = 4, 5, 6, 7 32

Table 4: Performance evaluation of different imputation techniques with feature selection.

Logistic regression SVM Random forest Bagging classifier MLP
Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score

Mean 77.29 0.805 56.08 0.715 56.08 0.693 74.86 0.815 76.68 0.811
Median 74.26 0.794 62.14 0.754 62.14 0.545 74.86 0.809 78.89 0.825

KNN 65.17 0.716 65.17 0.716 50.02 0.585 73.65 0.785 81.53 0.841
MICE(RF) 71.23 0.785 73.05 0.798 76.08 0.816 76.68 0.812 90.02 0.914

Table 5: Performance evaluation of different imputation techniques without feature selection.

Logistic regression SVM Random forest Bagging classifier MLP
Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score

Mean 62.13 0.685 46.98 0.607 46.98 0.549 73.08 0.813 75.47 0.79
Median 59.1 0.719 56.07 0.7 43.95 0.48 73.65 0.79 76.89 0.822

KNN 59.1 0.73 56.07 0.715 43.95 0.166 73.05 0.764 80.53 0.834
MICE(RF) 70.01 0.765 72.43 0.782 76.68 0.808 76.08 0.793 88.8 0.902
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Figure 6: Bar graph of accuracy on MLP with and without feature selection.

Figure 7: Bar graph of f1-score on MLP with and without feature selection

9. Conclusion

In this study, we have compared four imputation techniques,
namely, mean imputation, median imputation, KNN imputa-
tion and random forest based MICE imputation, for handling
the missing values along with feature selection in the HCC
dataset. K-fold cross validation was used for data preprocess-
ing and optimizing the related hyperparameters. The imputa-
tion and feature selection techniques were compared based on
the performances of the five selected classification models on
the preprocessed dataset. The results show that random for-
est based MICE imputation along with feature selection outper-
forms the other imputation techniques by achieving an accuracy
of 90.02% and f1-score of 0.91 using MLP classifier. The re-
sults indicate that this machine-learning based approach can be
effectively used for predicting mortality risk in patients suffer-
ing from HCC.

10. Future work

Although the results are promising, the setup requires more
data for rigorously testing the robustness of the pre-processing
techniques and classification models. To address the issue, data
using multiple other HCC datasets are being collected and used
for enhancing the approach.
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