Deep learning for COVID-19 classification using cough audio.
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Abstract

We present a deep learning based COVID-19 cough classifier, which can discriminate between audio recordings of coughing by
COVID-19 positive subjects and COVID-19 non-positive (COVID-19 negative and healthy) subjects. This classifier represents
means of early screening for COVID-19 that does not require the subject to be present at the testing location. Since it can be made
available remotely on a mobile device such as a smartphone, the risk of COVID-19 transmission due to contact while testing can
be eliminated. The experimental evaluation is based on a blend of two crowdsourced and publicly available datasets. The first
is COSWARA, compiled by IISC-Bangalore and containing the audio recordings of 1184 subjects who are either healthy or have
recovered from COVID-19 and 107 subjects who are COVID-19 positive. The second is COUGHVID, compiled by EPFL and
containing audio recordings of 1133 subjects who are healthy and 397 subjects who are COVID-19 positive. The machine learning
algorithms considered for the classification of the audio are a multilayer perceptron (MLP), a GRU-based recurrent neuralnetwork
(RNN), a convolutional neural network (CNN), an OxfordNet (VGG-16) and a ResNet-50. Results show that the pre-trained
ResNet-50 neural network architecture outperformed the other candidates, achieving a specificity of 90%, a sensitivity of 93%, an
AUC score of 0.96, and an accuracy of 92.78%

Keywords: COVID-19, cough, audio, deep-learning, classification, Multilayer Perceptron (MLP),
Recurrent Neural Network (GRU), Convolutional Neural Network (CNN), OxfordNet (VGG-16), ResNet-50,
Transfer learning.

1. Introduction 20 to detect the COVID-19 infection in suspected individuals. As
of 2™ QOctober 2021, more than 564 billion COVID-19 tests
have been performed around the world [5]. Although RT-PCR
has been globally adopted as a gold standard, its limitations in-
clude a long turnaround time (the test takes between 4 and 48
s hours to give the results [6]) and reported false negative rates
as high as 33%, equating to sensitivity of 67% [7]. The equip-
ment required to perform the test also has a high cost, making it
less affordable to economically weaker regions. In the past 22
months, more than 235 million cases of COVID-19 have been
a0 reported worldwide, resulting in more than 4.8 million deaths.
In several cases COVID-19 testing facilities have been over-
loaded [8].

COVID-19 (COronaVirus Disease of 2019), is a contagious
disease caused by SARS-CoV-2 (Severe Acute Respiratory
Syndrome Corona Virus 2). With the first case identified in
Wuhan, China in December 2019, it has since spread around the
world and was classified as a global pandemic on 11" Febru-
ary 2020 by the WHO (World Health Organization) [1]. The
SARS-CoV-2 virus spreads through direct contact with respira-
tory droplets and aerosols produced by an infected person, gen-
erated as they breathe, cough, sneeze or speak. Some common
symptoms of COVID-19 include dry coughing, fever, fatigue,
breathing difficulties, loss of taste and smell, and muscle pain
[2] [3]. Because this virus has the ability to mutate and generate
new strains, it is difficult to develop a vaccine or medical treat-
ment. Therefore, the WHO has recommended increased testing
and social distancing in regions affected by the COVID-19 pan-
demic.

The last decade has seen a rise in the application of ma-
chine learning based approaches across various domains due to

s the increased availability of data. Since the onset of COVID-
19, researchers have applied such techniques to detect early
symptoms. For example, a ResNet-50 based network was
trained on CT (Computed Tomography) images of lungs to de-
tect COVID-19 [9, 10, 11]. Similarly, X-ray images of lungs
Chain Reaction) [4] is a standard diagnostic method adopted ,  }.ve been used to detect COVID-19 with the help of a CNN
(Convolutional Neural Network) [12, 13, 14, 15]. One study

)

For diagnosis, RT-PCR (Reverse Transcription Polymerase
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shows that machine learning models can be used to predict
whether a patient suffers from bronchitis, bronchiolitis, or per-
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tussis based on audio recordings of their coughing sounds with
accuracy over 89% [16, 17, 18, 19]. Other studies have used
similar approaches to determine whether these coughing sounds
are a symptom of COVID-19 or not [20, 21, 22]. For exam-
ple, a crowdsourced dataset of respiratory sounds produced by
healthy individuals and by sufferers of COVID-19 was com-
piled in [23]. A binary classifier was shown to achieve an AUC1oo
(area under the ROC curve) above 0.8 across various tasks.
Another study used two crowdsourced datasets (COSWARA
and Sarcos) of cough audio recordings to train a ResNet-50
classifier that distinguishes between the coughs of COVID-19
and healthy subjects. A Resnet-50 architecture was shown toros
achieve an AUC of 0.976 and an accuracy of 95.3% while an
LSTM (Long Short Term Memory) recurrent architecture sub-

jected to SFS (Sequential Forward Search) achieved an AUC of

0.938 on the held-out Sarcos dataset [24].

Collecting cough audio from COVID-19 patients is challeng-
ing and many of the resulting datasets are not publicly avail-
able. Among the freely available datasets, project NoCoCoDa""
includes annotated coughing audio from COVID-19 subjects
collected through public interviews [25]. Project Coswara, exe-
cuted by IISC-Bangalore, is a regularly-updated crowdsourced
open-access dataset of respiratory sounds including cough and
breath, as well as speech [26]. At the time of writing, this
dataset contains audio recordings from 1184 healthy partici-
pants and 107 COVID-19 subjects. Project Coughvid, executed
by EPFL, also strives to develop a validated crowdsourced!'s
COVID-19 cough audio dataset [27]. At the time of writing,
this dataset contained more than 20,000 audio recordings of
which more than 2,000 had been labeled by experienced pul-
monologists to diagnose medical abnormalities present in the
coughs. This makes Coughvid one of the largest expert-labeled
cough datasets.

120

This study is based on the audio cough recordings found
in the two publicly available crowdsourced datasets Project
Coswara and Project Coughvid. Both datasets are imbalanced
and contain a much smaller number of COVID-19 coughs than
other coughs. After preprocessing, the Coswara dataset in-'®
cludes 107 COVID-19 positive and 1184 COVID-19 negative
samples. The Coughvid dataset contains 397 COVID-19 posi-
tive and 1133 COVID-19 negative samples. For our work, the
two datasets were merged to create a single dataset with a to-
tal of 2821 samples, of which 504 corresponded to COVID-19
positive and 2317 to COVID-19 negative subjects. To balance™
this dataset, the Synthetic Minority Oversampling Technique
(SMOTE) was used [28].

Five deep-learning architectures, MLP, RNN, CNN, VGG-
16, and ResNet-50, were trained, optimised and tested using K-
fold cross-validation. Model performance was compared based
on specificity, sensitivity, AUC and accuracy. ResNet-50 was
seen to outperform the other models, achieving a specificity ofiss
90%, a sensitivity of 93%, an AUC of 0.96 and an accuracy of
92.78%.

2. Data description

2.1. The Coswara dataset

The Coswara project, executed by the Indian Institute of Sci-
ence (IISc) in Bangalore, aims to build a diagnostic tool for
COVID-19 detection based on respiratory, cough, and speech
audio recordings. Crowd-sourcing is used to collect the data
via a web-based interface. The Coswara interface records the
user’s heavy and shallow coughing, fast and slow breathing,
spoken English vowels, digits from one to ten and metadata
including geographical location, age, gender and pre-existing
medical conditions. Finally, the current COVID-19 health sta-
tus must be specified according to the following seven classes:

e Healthy

e No respiratory illness

e Respiratory illness not identified

e COVID-19 positive with no symptoms

e COVID-19 positive with mild symptoms

e COVID-19 positive with moderate symptoms

e Fully recovered from COVID-19

Data collection began in April of 2020 and the dataset is
being regularly annotated and updated. Audio recordings are
sampled at 44.1 kHz, but in order to ensure uniformity with the
Coughvid data, these recordings are downsampled to 22.4 kHz.
Each sample in this dataset had a shallow and a heavy cough au-
dio. The shallow coughs generally had a lower amplitude than
the heavy coughs, as shown in the histogram presented in Fig-
ure 1. The figure shows that the amplitude distribution of the
heavy coughs in the Coswara dataset follow the distribution of
Coughvid coughs more closely. Therefore, for the experiments
presented in this work, we have made use of the “heavy cough”
recordings in the Coswara dataset.

The ‘Healthy’ coughs were taken as COVID-19 negative
class, while the ‘Positive mild COVID-19 symptoms’, ‘Posi-
tive asymptomatic COVID-19 symptoms’ and ‘Positive moder-
ate COVID-19 symptoms’ were taken as the COVID-19 posi-
tive class. An analysis on the Coswara dataset is presented in
Figures 2 and 3.

2.2. The Coughvid dataset

The Coughvid project is executed by by EPFL (Ecole Poly-
technique Fédérale de Lausanne). Like the Coswara project,
it also uses crowdsourcing for data collection by means of a
web-based interface. Recorded metadata includes the subject’s
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Figure 2: The Coswara dataset includes data from 107 Covid-19 positive and
1184 healthy subjects. There are 974 male and 317 female subjects most of
whom are aged between 20 and 45 and reside in India.

geographical location, age, gender, other respiratory conditions,
fever or muscle pain. The current COVID-19 health status must
be specified according to the following three classes.

160

o Healthy
e COVID-19 symptomatic (not diagnosed)
e COVID-19 positive (diagnosed)

Coughvid data collection began in April of 2020 and remains
ongoing. At the time of writing, there were more that 20,000'%
audio recordings in the dataset, all made at a sampling rate of
22.4 kHz. A subset of approximately 2,000 of the collected
cough recordings have been examined and annotated by expert
pulmonologists, and these were used in our experiments. All
recordings labeled as COVID-19 positive by at least one of the
three experts were assumed to belong to the ‘COVID-19 pos-
itive’ class, and the remaining were assumed to belong to the
‘COVID-19 negative’ class. o
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Figure 3: Coswara dataset: Geographical location of the contributing subjects
shown on a world map. Most of the contributors are from India, followed by
USA, Canada and, France.

An analysis on the Coughvid dataset is shown in Figure 4
and Figure 5.
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Figure 4: The Coughvid dataset has 397 covid-19 positive users and 1133
healthy users. Most of the users have an age between 20 and 50. There are
1045 male users, 473 female users, and 12 other.
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2.3. Dataset summary

The data from both sources were combined to create a larger
pool of audio samples which was later preprocessed and used
for feature extraction and model training. Table 1 describes
the number of samples from each source and some statistics
on the duration of these samples. The final pool contains 2821
samples with total duration of 4.04 hours, average duration of
5.16 seconds and standard deviation of 2.64 seconds.

3. Data Preprocessing

3.1. Data segmentation

All data was in the form of PCM encoded audio at a sample
rate of 22.4 kHz. Regions of silence were removed from this
data using a simple energy-based threshold. Figure 6 shows an
audio signal before and after this silence removal.



Table 1: Summary of the Coswara and Coughvid data. The combined data was used for preprocessing, feature extraction and classifier training and evaluation. The
number of subjects was not available for the Coughvid data (indicated as 'na’).

Status Number of subjects | Number of audio samples | Total duration | Average duration | Standard deviation of duration
COVID-19 positive 98 107 0.16 hours 5.45 seconds 2.97 seconds
Coswara | COVID-19 negative 1027 1184 2.12 hours 6.45 seconds 3.44 seconds
Total 1125 1291 2.28 hours 6.36 seconds 3.4 seconds
COVID-19 positive na 397 0.44 hours 4.02 seconds 1.82 seconds
Coughvid | COVID-19 negative na 1133 1.32 hours 4.18 seconds 2.05 seconds
Total na 1530 1.76 hours 4.14 seconds 1.99 seconds
COVID-19 positive na 504 0.6 hours 4.32 seconds 2.06 seconds
Combined | COVID-19 negative na 2317 3.44 hours 5.34 seconds 2.76 seconds
Total na 2821 4.04 hours 5.16 seconds 2.64 seconds

Figure 5: Coughvid dataset: Location of the users on the world map in violet
dots. The data is gathered from users located in all the 6 major continents.
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Figure 6: An example of a raw audio signal from the Coswara dataset (a)
before and (b) after silence removal.
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3.2. Data Balancing

After pooling the Coswara and Coughvid data, the dataset
contains 2317 audio recordings of coughs by healthy subjects
and 504 audio recordings of coughs by COVID-19 positive sub-
jects. Thus, it is highly imbalanced in favour of samples from
healthy subjects. To address this imbalance, the Synthetic Mi-
nority Oversampling Technique (SMOTE) was applied [28], as
also proposed in [24]. SMOTE synthetically oversamples the
minority class by choosing a random example xyy and deter-
mining its k nearest neighbours. One of these neighbours x is
chosen at random and a synthetic example xsyvorg is calculated
by choosing a point between x and xyn according to Equation 1

ey

XsMOTE = X + [0+ (XyN — X)

here u is uniformly distributed between 0 and 1. During pre-
liminary experimentation, we have found that £ = 5 produced
best results and note that this value also agrees with the ratio
between the minority and majority classes in our dataset.

3.3. Data Padding

The preprocessed audio signals generally have different
lengths because the audio recordings were of different duration.
To accommodate the fixed input dimensionality demanded by
some of the classifiers, data padding was applied [29]. The 90"
percentile of the durations of the audio signals in the dataset was
determined and used as a threshold D" A]l preprocessed
signals with a duration greater than D"/ were truncated to
this duration and all signals with a duration less than D"eshold
were padded with zeros. After padding, each audio signal had a
duration of D™7¢sh9ld which in our experiment was 9.5 seconds.

4. Feature Extraction

After preprocessing, features were extracted form the audio
data. These features were used to train and evaluate the classi-
fiers. Six types of feature were considered in this study:
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e Mel spectrogram features.
e Mel frequency cepstral coefficients (MFCCs).
e MFCC delta features, also known as velocity features.

e MFCC delta-delta features, also known as acceleration
features.

e Time-domain zero crossing rate (ZCR).
230
e Time-domain root mean squared energy (RMSE).

4.1. Mel Spectrogram

The mel scale is a non-linear transformation of frequency,s
based on the human perception of pitch. Frequencies that
are equidistant on the mel scale will be perceived as equidis-
tant by a human listener. A mel spectrogram is a spectro-
gram indicating frequencies on the mel scale, for example Fig-
ure 7. The mel spectrogram has been successfully used in audio
recognition, music detection and environmental sound classifi-
cation [30, 31]. In this study, mel-scaled spectrograms were
calculated for all audio samples with amplitudes in decibels.
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Figure 7: Mel Spectrogram representation of a COVID-19 positive cough
audio signal.

4.2. Mel Frequency Cepstral Coefficients (MFCCs):

Mel frequency cepstral coefficients (MFCCs) are derived
from the cepstral representation of an audio signal based on fre-
quencies that are equally spaced on the mel scale, as computed

using Equation 2.
245

f

Smet = 2595 x log(1 + ﬁ) )

MEFCC features have been widely and successfully applied
in audio processing tasks like automatic speech recognition.zs
Recently, MFCCs have also been applied to COVID-19 cough
classification [24, 32, 33, 34]. An example of MFCC features
extracted from the cough audio signal of a COVID-19 positive
patient are shown in Figure 8.
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Figure 8: MFCC feature representation of a COVID-19 positive cough audio
signal.

4.3. Delta features of Mel Frequency Cepstral Coefficients:

Delta features (also known as velocity features) capture the
dynamic behaviour of a signal by determining the first dif-
ference of the feature vector in time. When appended to
the MFCC, delta features can offer improved performance in
speech recognition tasks and also in COVID-19 cough classi-
fication [24, 35]. The delta coeflicient d[¢] at time ¢ is defined
using Equation 3.

9 L 0(clt + 6] - clt - 6])
239 62

Here, c[t— 6] and [t + 6] are static coefficients from the MFCC
feature of audio, and the value of ® was set to be 2.

dlt] =

3

The delta features were calculated for the MFCC feature vec-
tors extracted from the audio signals. An example of the delta-
MFCC features for the cough audio signal of a COVID-19 pos-
itive patient are shown in Figure 9.
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Figure 9: Delta features of the signal in Figure 8.

4.4. Delta-Delta features of Mel Frequency Cepstral Coeffi-
cients:

Delta-delta features (also known as acceleration features) are
also useful in capturing the dynamic behaviour of a signal. Like
velocity features, acceleration features can lead to improved
performance in tasks involving audio classification, such as
COVID-19 cough classification [24, 36]. Acceleration features
are calculated from the second difference of a feature sequence,
or equivalently the first difference of the velocity feature se-
quence. The delta-delta or acceleration coeflicient a[¢] at time ¢
is defined using Equation 4.

© L 6(dlt+ 6] —d[t - 6])
239 62

Here, d[t — 6] and d[t + 0] are delta coefficients from the MFCC
feature of audio, and the value of ® was set to be 2.

alt] =

“
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An example of the delta-delta MFCC features extracted from
a cough audio signal are shown in Figure 10.
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Figure 10: Delta-delta features of the signal in Figure 8.
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4.5. Zero Crossing Rate (ZCR):

Zero crossing rate (ZCR) is the number of times a signal
changes polarity within a fixed time interval [37]. ZCR has
been widely used in audio classification [24, 38, 39]. ZCR iszs
calculated using Equation 5.

T-1

1
ZCR = —— ; IR (S[f] - [t + 1]) )

290
where, s[¢] is the signal at time ¢ and 1 _, is an indicator func-
tion such that it returns 1 when input is less than 0 and O other-
wise.

This feature was calculated on the padded samples of prepro-
cessed audio signals. The ZCR (Zero Crossing Rate) feature
extracted from an audio signal is shown in Figure 11.
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Figure 11: The zero crossing rate (ZCR) of a COVID-19 positive cough audio

signal. 300

4.6. Root Mean Squared Energy (RMSE):

The root mean squared energy (RMSE) is a feature indicating
the energy in a frame of the audio signal. It is a widely used
feature in audio analysis tasks like speech recognition [40]. The

RMSE value of a signal s[n] is calculated using Equation 6.  **

N-1
RMSE[n] = % Z s[n]? (©)

=0 310

This feature was calculated on the padded samples of pre-
processed audio signals. The Root Mean Squared Energies
(RMSE) feature extracted from an audio signal is shown in Fig-
ure 12.
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Figure 12: RMSE (Root Mean Squared Energies) of a COVID-19 positive
cough audio signal.

4.7. Combining the features:

For each audio signal in the dataset, the above features were
extracted and represented as feature matrices which were used
for training and evaluation of the classification models. The first
four features (mel spectrogram, MFCCs, MFCC deltas, MFCC
delta-deltas) were represented as a matrix with time on the hor-
izontal axis and coefficients on the vertical axis. The remaining
features (ZCR, RMSE) were represented as one-dimensional
matrices (vectors) with time again on the horizontal axis. These
six feature matrices were stacked vertically (row wise) to from
a single feature matrix with time on the horizontal axis and fea-
tures on the vertical axis.

Since a number of different hyperparameters were involved
in calculating this feature matrix, their dimensions were differ-
ent for different classifiers. The process of selecting optimal
hyperparameters is discussed in Section 6 and the resulting di-
mensions of the feature matrices is discussed in Section 5.

5. Model Architectures

In this study, we have considered five different deep learn-
ing models for classification. These are a multilayer perceptron
(MLP), a GRU based recurrent neural network (RNN), a con-
volutional neural network (CNN), an OxfordNet (VGG-16) and
a ResNet-50. Each of these is briefly described below.

5.1. Multilayer Perceptron (MLP):

A multilayer perceptron (MLP) is a type of artificial neural
network (ANN) with multiple hidden layers between the input
and output [41]. These models can learn non-linear relation-
ships between input and output data and have a wide scope of
application in classification and regression tasks, such as hand-
written digit classification and house price prediction [42, 43].
They have also successfully been applied to cough audio clas-
sification [44, 45, 46]. Each node in MLP classifier calculates
the output from the input data using Equation 7.

al = p(bl + > Whal™h ©)
k

In this equation W’jk is the trainable weight matrix of current
layer /, ai" is the activation vector from the previous layer
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[ — 1, b’ is the bias term of current layer and, ¢ is the non-
linear activation function. Supervised learning is accomplished
by updating the trainable parameters (weights and bias terms)
by applying gradient backpropagation and gradient descent. We
have applied adaptive momentum (ADAM) as the optimiza-
tion algorithm and sparse categorical cross-entropy as the loss
function. The architecture and important hyperparameters used
while training the model are shown in Figure 13.
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Figure 13: The model architecture of the MLP network. The network has four
hidden layers with alternating pairs of batch normalization and dropout layers.

5.2. Recurrent Neural Network (RNN):
350

Recurrent neural networks (RNN) are a type of artificial neu-
ral network widely used in tasks involving time-series data. In
contrast to MLPs, RNNs include feedback loops in their recur-
rent layer, allowing them to use information from previously
seen inputs. This internal memory makes them effective at3s
modelling time series or sequential data [47] [48]. Gated re-
current units (GRU) are a simplified version of the architecture
used in the more complex long short term memory (LSTM)
units and have been found to be easier to train. The inclusion
of explicit internal update and reset gates allows previous in-
formation to be remembered over extended periods [49]. The
output of a GRU as denoted by Equations 8, 9, 10 and 11.

h[n] = (1 - z[n]) © W[n] + z[n] © h[n — 1] ®8)

W [n] = tanh(x[n]W g, + (t[n] @ hlz = 1YWy, + b)) 9),,
r[n] = o(x[n]W,, + h[n — 1]W,, +b,) (10)
z[n] = o(x[n]W,. + h[n — 1]W,. +b,) (11)

In these equations,, X[#] is the time sequence input vector, h[n]
is the output vector, h’[n] is the candidate activation vector, r[n]
is the reset gate vector, z[n] is the update gate vector, W,;,, Wy,
W, Wi W, , W, are the trainable weight matrices and, by,
b,, b, are the trainable bias vectors. For training the model,
adaptive momentum (ADAM) was used as the optimization
function and sparse categorical cross-entropy was used as the
loss function. The architecture and important hyper-parameters
used while training the model are defined in Figure 14.

—Tle= : O Output
— — > || > — -3
3 O Dense layer
CEh> units = 2
B @) Activation = Softmax
Input data Reshape 2 GRU layers Global  Dense layer Dropout layer
[112,196,1] layer units = 64 Average units = 128 dropout rate = 0.5

[112,196] Pooling  Activation = ReLU

Figure 14: The model architecture of the GRU network. The network has three
hidden layers of which two are GRU layers and one is a dense layer.

5.3. Convolutional Neural Network (CNN):

A convolutional neural network (CNN) is a type of artificial
neural network that is particularly effective in image classifica-
tion tasks, such as face recognition and instance segmentation
[50, 51, 52]. CNNs have recently been applied successfully to
speech signals since these signals can be represented as two-
dimensional images in the form of a spectrogram. In this way
they have also been shown to be an effective tool for cough de-
tection [53]. A CNN is able to assign importance to various
regions of an image by means of trainable kernels. Equation 12
describes the calculation of the output of a CNN layer from an
input matrix.

Xl[m, n] = ¢+ Wl[m, nj = X! [m, n])

(12)
=g(b+ Y > W KX"[m = jin— k)
Jj k

Here, X'"! is the activation matrix from previous layer, W' is
the trainable weight matrix of current layer, b is the bias term, ¢
is the non linear activation function and, * is the convolution op-
eration. For training the model, adaptive momentum (ADAM)
was used as the optimization function and sparse categorical
cross-entropy was used as the loss function. The architecture
and important hyperparameters used while training the model
are defined in Figure 15.
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Figure 15: The model architecture of the CNN network The five hidden layers

consist of four convolutional layers and one dense layer. The features extracted

from the cough audio signals are stacked vertically to create a vector input.
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5.4. OxfordNet (VGG-16):

VGG-16 (also called OxfordNet) is a convolutional neural
network architecture named after the Visual Geometry Group
at Oxford University [54]. The network is 16 layers deep and is
widely used in the computer vision domain for transfer learn-
ing and efficiently handling complex tasks like image classifi-
cation with many classes [55]. The architecture and important
hyperparameters used while training the model are defined in
Figure 16.
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Figure 16: The model architecture of the OxfordNet (VGG-16) neural
network. The last three fully connected layers of VGG-16 were replaced by a
single dense layer followed by a dropout layer and a a final two-dimensional

softmax layer.

In this study, we have used VGG-16 for transfer learning
and the model was initialized with weights pre-trained on the
ImageNet data. The default VGG-16 architecture has a 1000-4s
dimnesional output layer for classifying the ImageNet data
hence, the final three layers, denoted as top in Figure 16, were
replaced with a dense layer, a dropout layer, and a final two-
dimensional softmax layer for our binary classification task.

5.5. Residual Networks (ResNet-50):

Residual network (ResNet-50) is a convolutional neural
network architecture that contains residual connections, also
known as skip connections, between its layers [56]. The net-
work is 50 layers deep and has been found to outperform many
other deep neural network architectures. It is widely applied
and has been successful in detecting COVID-19 from CT scan
images of lungs and also from cough audio [9, 10, 11, 24]. We
have used ResNet-50 for transfer learning, since it is pre-trained
on the ImageNet data. Since the output layer of the default
pre-trained ResNet-50 has 1000 dense units, we have replaced
it with two pairs of dense and dropout layers and a final two-
dimensional softmax layer for binary classification. The newly-
added layers are trained by adaptive momentum (ADAM) with
sparse categorical cross-entropy as the loss function. The archi-
tecture and important hyperparameters used while training the

model are presented in Figure 17. 4o
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Figure 17: The model architecture of the ResNet-50 neural network. The final
dense layers of ResNet-50 have been replaced by two sets of dense layer
followed by dropout layer, and finally a two-dimensional softmax later.

6. Experimental Method

6.1. Evaluation Metrics

To compare different model architectures, we assess their
performance on the basis of the evaluation metrics accuracy,
sensitivity, specificity and area under the receiver operating
characteristic curve (ROC AUC).

6.1.1. Accuracy:

Accuracy is defined as a ratio of the number of correctly clas-
sified samples to the total number of classified samples and is
usually denoted as a percentage. Accuracy is stated in Equa-
tion 13 in terms of the confusion matrix of a binary classifier
illustrated in Figure 18.

Number of correctly classified points
Total number of classified points

Accuracy =

(13)
~ TP + TN
" TP + FP + TN + FN

Predicted Predicted
1
Actual
0 N FP
1 FN 1P

Figure 18: Confusion Matrix represented in terms of actual class labels and
predicted class labels.

In this figure, T P corresponds to the number of true positives,
the positive samples that were correctly classified as positive,
TN corresponds to the number of true negatives, the negative
samples that were correctly classified as negative, FP corre-
sponds to the number of false positives, the negative samples
that were incorrectly classified as positive, and FN corresponds
to the number of false negatives, the positive samples that were
incorrectly classified as negative.
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6.1.2. Equal Error Rate (EER):

EER is a rate at which both false positive rate (FPR) and false
negative rate (FNR) are equal. The FPR is defined as the ratio
of negative samples that were incorrectly classified to the total
number of negative samples. In contrast, the FNR is defined as
the ratio of positive samples that were incorrectly classified to
the total number of positive samples. To calculate the EER, the
FPR and FNR are calculated at different decision thresholds and
the threshold at which the difference between FPR and FNR is
zero is identified. It can be formulated as a value of threshold th
that minimizes the absolute difference between FPR and FNR,
as shown in Equation 14.

455

argmin | FPRy, — FNRy, |
the(0,1)

(14)

6.1.3. Area under the ROC curve (AUC):

The receiver operating characteristic (ROC) graphically indi-
cates the tradeoff between sensitivity (TPR) and specificity (1 -
FPR) for a binary classifier as the decision threshold varies [57].
The area under this ROC curve (AUC) is a useful figure of merit
that reflects the performance of the classifier over the entire
range of decision thresholds. 460

In our binary classification problem, cough audio by COVID-
19 positive subjects is labeled as the positive class and cough
audio by healthy or COVID-19 negative subjects is labeled as
the negative class. The primary objective of the classifier is to
reduce both false negatives (subjects who have COVID-19 but
are classified as healthy) and false positives (healthy or COVID-
19 negative subjects who are classified as COVID-19 positive).sss
These errors are balanced at the equal error rate (EER).

if P<Pggr

otherwise

Ypred = 0

15470
_ (15)

Equation 15 indicates the classification decision, where P is
the probability of the audio input being from a COVID-19 pos-
itive subject (as calculated by the classifier) and Pggg is the475
threshold that achieves the equal error rate.

6.1.4. Sensitivity and specificity:

Sensitivity and specificity are measures of the performance
of a binary classifier. Sensitivity, also known as the true positive
rate (TPR), is a measure of how well a classifier can identify the480
positive class. It is given by the ratio of correctly classified pos-
itive samples to the total number of positive samples, as shown

in Equation 16.

Sensitivity (TPR) = Correctly classified positive samples

Total number of positive samples

TP

" TP+ FN
(16)

Specificity, also known as true negative rate (TNR), is a mea-
sure of how well a classifier can identify the negative class. It
is given by the ratio of correctly classified negative samples to
the total number of negative samples, as shown in Equation 17.

Correctly classified negative samples

S pecificity (TPR) =
pecificity ( ) Total number of negative samples

TN

“TN+FP
a7

In our evaluation, we have calculated sensitivity and specificity
at the equal error rate (EER).

6.2. Cross Validation

Cross-validation was used for model training, hyperparam-
eter optimisation and classifier evaluation. We used a two
step nested process for fine-tuning the classifiers, and evalu-
ating their performance on unseen data. First, the dataset is
split into multiple non-overlapping optimization and test sets,
as illustrated in Figure 19. The test sets were reserved as un-
seen data for final independent evaluation of the performance
of optimized classifiers. This split is used in the outer loop of
cross validation, as shown in Figure 21. The optimization set
is further divided in an inner loop into multiple folds of non-
overlapping training and validation sets, as shown in Figure 20.
These are used for training the classifier and optimising the hy-
perparameters respectively.

The two steps, namely, hyperparameter optimization and
performance on unseen data, are discussed briefly below.

6.2.1. Hyperparameter optimization

K-fold cross validation is a statistical method that employs
a dataset resampling procedure to train, optimise and evaluate
machine learning models [58]. The procedure has a parameter
k that denotes the number of *folds’ (partitions) into which the
dataset is divided. This division ensures that the samples from
a particular patient all occur in the same fold and hence that the
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Figure 19: Five step data splitting for model evaluation on unseen data. At
each step, training and validation set is used for hyperparameter optimization
and test set is used for evaluating the performance on unseen data.
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Figure 20: k-Fold cross validation with k=10. In each iteration 9 data folds are
used for model training and the remaining fold for validation.

folds are independent. Once the dataset has been divided into k
folds, the algorithm iterates over these folds. At each iteration
one of the & folds is chosen as a validation set and the remaining
k — 1 as training set. This process is illustrated as inner loop in
Figure 21.

Figure 20 illustrates this for £ = 10, as also used in our ex-**
periments.

A number of hyperparameters are implicit in feature extrac-
tion, classification model architecture and training. These hy-
perparameters, as well as the values considered in their opti-
misation, are listed in Tables 2 and 3. All these hyperparame-*'°
ters were optimised by means of nested cross validation. The
optimal values found in this way are listed in Table 4. The
optimised model architecture hyperparameters have also been
specified in Figures 13, 14, 15, 16, and 17.
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6.2.2. Classifier performance

Classifier performance is evaluated on unseen test data in the
outer loop of nested cross validation as shown in Figure 21. The

final classification performance is determined by calculating the*®

10

Hyperparameter optimization

Dataset I

Test set

Performance on unssen data

Optimizafion set

Train set Validation set

raining &
evaluating

. model

N
v

| |Hyp&rparamelers |
/J'\
4 .

3 xéralualing D\r\i“: ¢

. testset
s
W

Inner loop

Ciuter beop

¥

Evaluation scare

Figure 21: Nested cross validation for hyperparameter optimization and
classifier performance evaluation.

average over the outer loop test sets.

7. Results

The five neural network architectures described in Section 5
were trained and optimised as described in Section 6. In the fol-
lowing section, we present the results of the optimal classifier
of each architecture using the metrics.

The performance of the classifiers is presented in Table 4 and
illustrated in Figure 22. The accuracy, AUC, specificity and,
sensitivity values are the mean values over the test folds, as
described in Section 6.2.2. Receiver Operating Characteristics
are presented in Figure 23.

The results show that the ResNet-50 outperformed all other
models, achieving AUC, sensitivity, specificity and accuracy
values of 0.96, 93%, 90% and, 92.78% respectively. The ROC
plots confirm that the deep neural networks pre-trained on im-
agenet data (VGG-16 and ResNet-50) achieve better perfor-
mance than the other neural networks (CNN, RNN and MLP)
over a wide range of decision thresholds.
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Table 2: The best hyperparameters tested for designing and fine-tuning the classifier models

Classifier type Hyperparameter Values tested
Number of hidden layers 1,2,3,4,5,6
MLP Number of units in each layer 2% where k = 4,5,6,7,8,9
Dropout rate 0.2,0.3,0.4,0.5,0.6,0.7
Number of recurrent layers 1,2,3,4,5,6
Number of GRU units in each layer 2F where k = 4,5,6,7
RNN Number of dense layers 1,2,3
Number of units in dense layers 2% where k = 4,5,6,7,8,9
Dropout rate 0.2,0.3,0.4,0.5,0.6,0.7
Classifier architecture hyperparameters Number of convolutional layers 1,2,3,4,5,6
Kernel size in each convolutional layer 3,4,5,6,7
CNN Number of dense layers 1,2,3

Number of units in dense layers

2% where k = 4,5,6,7,8,9

Dropout rate 0.2,0.3,0.4,0.5,0.6,0.7

Number of dense layers at the end

1,2,3,4

VGG-16, ResNet-50

Number of units in dense layers

2k where k = 4,5,6,7,8,9

Dropout rate 0.2,0.3,0.4,0.5,0.6,0.7

Batch size 2k where k = 6,7,8

Classifier training hyperparameters All classifiers

Epochs 20 %X k, where k =1,2,3,4,5

Optimization function SGD, Adagrad, RMSProp, ADAM

Learning rate 107%, where k = 1,2,3,4

Table 3: The hyperparameters tested during data-preparation and feature extraction using k-fold cross validation. Note that k=0 was used while testing, which
means independent features and combinations where one or more features were absent were also tested.

Processes Hyperparameters Description Range
Data segmentation Frame length The number of samples per analysis frame 2F, where k = 7,8,9, 10, 11, 12
Hop length The number of samples between analysis frame 256 X k, where k = 1,2,3,4
Root Mean Square Energy (RMSE), Frame length The number of samples per analysis frame k=0,2", where i = 7,8,9,10, 11, 12
Zero Crossing Rate (ZCR) Hop length The number of samples between analysis frame 256 X k, where k = 1,2,3,4
Mel Spectrogram n_mels number of Mel bands to generate 32x k,where k =0,1,2,3,4,5
MFCC, MFCC delta, MFCC delta-delta n_mfcc Number of MFCC:s to return 13 x k, where k =0,1,2,3,4,5,6

Table 4: Model performances observed on unseen data using optimized hyperparameters. ResNet-50 yields the best results with the highest AUC, specificity,
sensitivity and, accuracy values.

Hyperparameters
Model Feature extraction hyperparameters Model training hyperparameters Results
n_mels | n.mfcc | frame length | hop length | batch-size | epochs | learning rate | AUC | Sensitivity | Specificity | Accuracy
MLP 32 26 1024 512 64 40 0.001 0.73 70% 68% 69.42%
RNN 32 26 2048 768 64 40 0.001 0.84 81% 75% 78.84%
CNN 96 52 2048 768 64 80 0.0001 0.89 86% 80% 84.24%
VGG-16 64 39 1024 512 64 100 0.0001 0.92 88% 82% 86.24%
ResNet-50 64 39 1024 512 64 100 0.0001 0.96 93% 90% 92.78%

8. Conclusion

535

In this study, we have presented COVID-19 classification us-
ing coughing audio data and various machine learning architec-
tures. For experimentation we have used two crowdsourced and
publicly available datasets, COUGHVID by IISC Bangalore,,,
and COSWARA by EPFL respectively. Together, these datasets
contain 2821 audio samples. We trained five neural network
architectures for classification: a deep multilayer perceptron
(MLP), a GRU based Recurrent Neural Network (RNN), a con-
volutional neural network (CNN), a VGG-16 and a ResNet-
50 on this data using mel-spectrogram, MFCC, zero crossing
rate (ZCR) and root mean square energy (RMSE) as features.
The best performing architecture is based on ResNet-50 and

11

achieves an AUC of 0.96, a sensitivity of 93%, a specificity of
90% and an accuracy of 92.78%. In terms of sensitivity and
specificity, this performance is on par with that achieved by an
RT-PCR test COVID-19 test. Therefore, COVID-19 screening
by machine learning based cough audio classification appears to
be a promising method of screening. In comparison with exist-
ing biological tests, it has the advantage of being cost-effective
and easily accessible by means of internet-enabled mobile de-
vices such as smartphones. It also can eliminate or strongly
reduce the risk of COVID-19 transmission during testing.
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Figure 22: The accuracy, AUC, specificity and sensitivity of different

optimised classifier. The ResNet-50 outperforms all the other architectures,

achieving specificity of 0.9, sensitivity of 0.93, AUC of 0.96 and an accuracy 580
of 92.78%.

Scores

096
033 033
03
088
086
082

565
570
575

VGG-16 RESNET-50

10
585
0.8
2
m
= 08
@
= 590
=
2
o 04
@
=
E
P ROC curve for DNN {AUC score 0.73)
0.2 | df” ROC curve for RMN (AUC score 0.84)
el —— ROC curve for CNN (AUC score 0.89) 5%
’,—" — ROC curve for VGG-16 (AUC score 0.92)
0.0 =4 —— ROC curve for RESNET-50 {AUC score 0.96)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
600

Figure 23: Receiver Operating Characteristic (ROC) curves of different
classification models. Resnet-50 outperformed the other classifiers by
obtaining a AUC score of 0.96
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9. Future work

Although the results are promising, the setup requires more®"

data in order to more rigorously test the robustness of the clas-
sifiers. To address this data from other COVID-19 coughing
audio datasets is being considered. Furhermore, we are devel-
oping a cloud-based API that could be accessed by internet-
enabled devices and allow the online classification of cough
audio collected by mobile devices such as smartphones.
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